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Resumo

A crise ambiental é hoje, um dos mais graves problemas enfrentados pela humanidade.

Entre as causas desta problemática, destaca-se a alta dependência econômica de matérias-

primas não renováveis para a produção industrial, gerando assim quantidades exorbitantes

de poluentes e rejeitos. Portanto enfatiza-se, na comunidade científica internacional, a

necessidade de uma economia circular baseada em biorrenováveis e processos de menor

impacto ambiental.

Neste contexto de desenvolvimento de uma economia sustentável encaixa-se este projeto,

que ataca esta problemática através do auxílio no desenvolvimento de um processo de

produção baseado em plataformas microbianas para a produção de Ácido mucônico. Este é

um ácido dicarboxílico de alto valor agregado e de extremo interesse industrial, por ser um

precursor direto de várias matérias-primas extensivamente utilizadas na indústria química

para a fabricação de nylon-6,6, PET e poliuretano.

No presente trabalho, buscou-se utilizar métodos de engenharia metabólica in silico

para transformar a bactéria Escherichia coli em uma biofábrica de muconato. Isso foi

realizado através da inserção de uma via heteróloga em um modelo metabólico em escala

genômica da E. coli, possibilitando a produção in silico do composto de interesse. Para

promover uma biossíntese efetiva, foram realizadas simulações por Análise de Balanço

de Fluxo e otimizações computacionais a partir do Algoritmo Evolutivo de Força Pareto

2 e Escaneamento de Fluxos baseado em Fluxo Objetivo Imposto, a fim de formular

estratégias não intuitivas de manipulações genéticas que aumentem a eficiência do processo

de formação do ácido mucônico pela bactéria, utilizando glicose como fonte de carbono

renovável, assim como condições ambientais que favoreçam esta biossíntese.

Palavras-chave: Modelos Metabólicos em Escala Genômica, Ácido mucônico, Otimização,

Análise de Balanço de Fluxo.





Abstract

The environmental crisis is today, one of the most serious problems facing humanity. Among

the causes of this problem, there is the high economic dependence on non-renewable raw

materials for industrial production, thus generating exorbitant amounts of pollutants and

waste. Therefore, the international scientific community emphasizes the need for a circular

economy based on biorenewables and processes with less environmental impact.

In this context of development of a sustainable economy, this project fits, which tackles

this problem by helping to develop a production process based on microbial platforms for

the production of muconic acid. This is a dicarboxylic acid of high added value and of

extreme industrial interest, as it is a direct precursor of several raw materials extensively

used in the chemical industry for the manufacture of nylon-6,6, PET and polyurethane.

In the present work, we sought to use in silico metabolic engineering methods to transform

the Escherichia coli bacteria into a muconate biofactory. This was done by inserting a

heterologous pathway into a genomic-scale metabolic model of E. coli, enabling the produc-

tion in silico of the compound of interest. To promote an effective biosynthesis, simulations

by Flux Balance Analysis and computational optimizations were carried out using the

Pareto Force 2 Evolutionary Algorithm and Flux Scanning based on Enforced Objective

Flux (FSEOF), in order to formulate non-intuitive strategies for genetic manipulations

that increase the efficiency of the process of formation of muconic acid by the bacteria,

using glucose as a renewable carbon source, as well as environmental conditions that favor

this biosynthesis.

Keywords: Genome-Scale Metabolic Models, Muconic Acid, Optimization, Flux Balance

Analysis.
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1 Introdução

1.1 Contextualização

Os avanços na indústria química durante os últimos séculos foram catalisadores

diretos de abruptas revoluções no estilo e qualidade de vida da civilização contemporânea.

Inegavelmente, estas inovações abrangeram inúmeros setores, como o agrícola, alimentício,

farmacêutico, de saúde, de materiais, têxtil, energético, entre outros (WONGTSCHOWSKI,

1957). Nesse sentido, o descobrimento e desenvolvimento de produtos químicos, e a

formulações de técnicas para produção e síntese destes compostos moveram - e ainda

movem - este processo de transformação rápida.

Embora tenha impactado positivamente vários aspectos da sociedade, a indústria

química ainda contribui com o agravamento de adversidades enfrentadas no presente, dentre

as quais destaca-se a poluição ambiental, visto que a fabricação de produtos químicos

de uso industrial ou final, frequentemente dependem de matérias-primas fósseis e metais

pesados, além de produzir gases de efeito estufa e outros poluentes na forma de resíduos

(ALINI et al., 2007; CHADWICK, 1988).

Sendo assim, com base no panorama de impacto ambiental da indústria química,

e tendo em vista a gravidade dos problemas ambientais e mudanças climáticas, assim

como os objetivos do desenvolvimento sustentável (ONU, 2015; FIGUERES et al., 2017;

ROCKSTRÖM et al., 2009), enfatiza-se a necessidade do desenvolvimento de ciência

e tecnologias que promovam uma economia circular, baseada em recursos renováveis

(LEITÃO, 2015; BIRCH; TYFIELD, 2013).

Uma alternativa promissora que pode revolucionar ou pelo menos complementar

a produção química é a indústria biotecnológica. Nesta indústria, recursos tipicamente

biogênicos são convertidos por microrganismos ou por enzimas, gerando biocombustíveis,

aminoácidos, bioplásticos e bioquímicos de valor agregado, visando evitar o esgotamento

de recursos fósseis não renováveis e as emissões de gases de efeito estufa (GEE) associadas.

Além disso, acredita-se que o uso de recursos renováveis tenha efeitos positivos para o

desenvolvimento socioeconômico, especialmente nas áreas rurais, podendo colaborar com

o desenvolvimento sustentável (FRÖHLING; HIETE, 2020).

1.2 Ácido cis,cis-mucônico e aplicações industriais

Os plásticos são uma grande família de polímeros, tradicionalmente derivados da

indústria petroquímica que se caracterizam por apresentarem baixo custo, baixo peso,
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durabilidade e facilidade de fabricação. Graças ao amplo espectro de aplicações, a demanda

e a produção de plásticos têm aumentado continuamente a cada ano, colocando uma enorme

carga sobre os combustíveis fósseis e o consumo de petróleo. Atualmente, a produção de

plástico é responsável por cerca de 4 a 8% do consumo de petróleo global, com expectativa

de chegar a 20% até 2050 (NARANCIC et al., 2020).

Neste contexto, os bioplásticos têm atraído grande atenção do mercado mundial,

sendo um possível substituinte de produtos plásticos convencionais baseados em fósseis.

Graças aos avanços crescentes e rápidos na área de engenharia metabólica, é possível

construir plataformas microbianas capazes de converter, de forma eficiente, matérias-

primas renováveis, incluindo amido, celulose, ácidos graxos, açúcares e proteínas, em uma

variedade de monômeros e polímeros que podem ser empregados na síntese de diferentes

bioplásticos.

Em particular, é crescente o interesse mundial pelo ácido cis,cis-mucônico (ccAM),

um ácido dicarboxílico poli-insaturado de 6 carbonos que pode ser utilizado como inter-

mediário na produção de uma ampla gama de bioplásticos, como o polietileno tereftálico

(PET), poliamidas (nylon-6,6) e poliuretanos que são usualmente obtidos a partir de recur-

sos fósseis., bem como de novas moléculas, como os ácidos 3-hexenedioco e 2-hexenedioco,

que podem gerar polímeros com propriedade novas e avançadas e que não poderiam ser

sintetizados efetivamente a partir de petroquímicos (SHANKS; KEELING, 2017).

Tradicionalmente, o ccAM é obtido através de processos químicos dependentes de

matérias-primas não renováveis à base de petróleo, na presença de altas concentrações de

ácidos e metais pesados, ou ainda a partir de processos cuja mistura de dois isômeros (ácido

cis,cis- mucônico e cis,trans-mucônico) é gerada a partir de catecol, um substrato aromático

considerado de alto custo. Ambos os processos químicos industrialmente disponíveis,

requerem grande aporte de energia e geram quantidades significativas de subprodutos

tóxicos, fatos que intensificam os problemas de poluição ambiental e aquecimento global,

além de custos elevados com substratos e/ou processos de separação (XIE et al., 2014;

KHALIL et al., 2020).

Por outro lado, o ccAM também é produzido naturalmente como metabólito in-

termediário da via β-cetoadipato, via responsável pelo catabolismo e destoxificação de

compostos aromáticos presente em microrganismos do solo, como leveduras do gênero

Candida e as bactérias dos gêneros Pseudomonas, Acinetobacter e Rhodococcus. Desta

forma, sua a produção por rota biotecnológica, empregando plataformas microbianas

eficientes e substratos baratos e renováveis se apresenta como uma estratégia ambiental-

mente e economicamente interessante (CURRAN et al., 2013; KOHLSTEDT et al., 2018).

Adicionalmente, ccAM representa um produto importante a ser incorporado dentro do

conceito de biorrefinaria pois pode agregar valor à biomassa e viabilizar a implementação

industrial do processo, uma vez que pode ser obtido a partir de qualquer monômero, seja
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de origem da celulose, hemicelulose e lignina de diferentes biomassas, ou ainda de outros

resíduos de processos integrantes da biorrefinaria.

Devido ao seu grande potencial de aplicação biotecnológica, importantes companhias

de biotecnologia, como Amyris, Merck, GC Innovation America e Deinove, vêm investindo

no desenvolvimento de plataformas microbianas e de bioprocessos eficientes para produção

de ccAM em escala industrial. Em 2018, o faturamento do mercado de ccAM foi de USD

79,6 milhões, com tendência de crescimento significativo, podendo chegar a USD 119,4

milhões em 2024 (IMARC, 2019).

Recentemente, vários estudos têm sido realizados a fim de redesenhar rotas meta-

bólicas de bactérias, como Pseudomonas sp., Sphingobium sp, Methylococcus capsulatus,

Corynebacterium glutamicum e Escherichia coli, e da levedura Saccharomyces cerevisiae a

fim de possibilitar a produção de ccAM a partir de substratos baratos e renováveis como

carboidratos gerados nos processos de desconstrução de materiais lignocelulósicos (glicose,

xilose e compostos derivados da lignina), glicerol (resíduo abundante da indústria de biodi-

esel), gás metano entre outros resíduos agroindustriais (XIE et al., 2014; SALVACHÚA

et al., 2018; HENARD et al., 2019). Progressos significativos quanto à concentração e

rendimento de ccAM estão sendo alcançados, como mostra a tabela 1:

Tabela 1 – Principais resultados de produção de ácido mucônico por rota biológica.

Micro
organismo

Substrato
Concentração

(g/L)
Rendimento
(mol/mol)

Referência

P. putida
p-coumarato +
Glicose

15,6 1,00 (JOHNSON et al., 2016)

P. putida
Catecol +
Glicose

25,0 1,00 (KOHLSTEDT et al., 2018)

P. putida Glicose 22,0 0,36 (BENTLEY et al., 2020)
M. buryatense Metano 0,001 0,0001 (HENARD et al., 2019)

C. glutamicum
Lignina +
Glicose

1,8 ND (BECKER et al., 2018)

C. glutamicum Glicose 37,5 0,21 (LEE et al., 2018)
S. cerevisae Glicose 0,1 0,01 (CURRAN et al., 2013)
S. cerevisae Glicose 5,1 0,07 (PYNE et al., 2018)
E. coli Glicose 2,4 0,30 (DRATHS; FROST, 1994)

E. coli
Glicose +
Glicerol

1,5 0,08 (LIN et al., 2014)

E. coli Glicose 36,8 0,22 (NIU, 2002)

Fonte: Autor.

Apesar dos avanços já atingidos nessa área, as baixas produtividades de ccAM,

assim como a elevada produção de subprodutos indesejados, em especial o protocatecuato,

produto intermediário da via do chiquimato, são recorrentes nos trabalhos já relatados.

Desta forma, o desenvolvimento de plataformas microbianas superprodutoras de ccAM



22 Capítulo 1. Introdução

mais robustas e com mínima produção de subprodutos indesejados, além de bioprocessos

economicamente viáveis e ambientalmente corretos, permanecem como desafios e requerem

esforços de engenharia metabólica e de otimização de bioprocessos.

1.3 Objetivos

Com base neste contexto, o presente projeto visou a investigação in silico de estra-

tégias para o desenvolvimento de uma plataforma microbiana para a produção de ácido

mucônico. Identificando, através de algoritmos desenvolvidos em Python, alvos de enge-

nharia genética para a deleção e super/subexpressão de genes visando o redirecionamento

dos fluxos metabólicos da bactéria Escherichia coli que favoreçam a produção de ácido

mucônico a partir de glicose, uma fonte de carbono renovável.
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2 Revisão Bibliográfica

2.1 Modelos metabólicos em escala genômica como ferramentas

cruciais para o design de plataformas microbianas

A engenharia metabólica de sistemas, área da ciência que incorpora conceitos e

ferramentas de biologia de sistemas, biologia sintética e engenharia evolutiva, tem acelerado

o desenvolvimento de cepas industriais de alta performance de forma direcionada e eficiente,

e vem contribuindo para o desenvolvimento de rotas sustentáveis alternativas para produção

de um vasto espectro de produtos químicos, desde combustíveis e commodities até produtos

químicos finos (CHOI et al., 2019a; LEE; KIM, 2015).

Após a divulgação da primeira sequência completa do genoma na década 90, as

pesquisas sobre modelos metabólicos em escala genômica (GEMs) abriram uma nova era

em engenharia metabólica. Hoje em dia, é crescente o uso de modelos metabólicos em escala

genômica (GEMs) para analisar e simular o metabolismo celular de diferentes organismos,

incluindo microorganismos, plantas e mamíferos. Além disso, tais GEMs são considerados

uma ferramenta poderosa para desenho de estratégias de engenharia metabólica (CHAE

et al., 2017).

Os GEMs são reconstruídos a partir de informações biológicas curadas experi-

mentalmente com base em dados de anotação de genes, de funções, metabólitos, reações

metabólicas e suas interações para um determinado organismo, fornecendo representações

matemáticas e computacionais das capacidades metabólicas conhecidas deste organismo

(KIM et al., 2015; GU et al., 2019). Estes modelos consistem em centenas ou milhares de

reações e são baseados na estequiometria de todas as possíveis reações metabólicas de uma

célula, considerando a reversibilidade destas reações.

Com base nestes dados de reações, é possível modelar um sistema de equações

diferenciais do balanço de massa para os componentes intracelulares, conforme explicitado

na expressão:
dcn(t)

dt
= Smn · v(t) (2.1)

Smn =























s11 s12 · · · s1n

s21 s22 · · · s2n

s31 s32 · · · s3n

· · ·

sm1 sm2 · · · smn























Onde cn representa a concentração do n-ésimo metabólito, S é a matriz de coefici-
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entes estequiométricos de m compostos ao longo de n reações e v(t) o vetor das velocidades

de reação.

O uso de GEMs no design de plataformas microbianas contribui para a otimização

da produção do produto de interesse, reduzindo os esforços e custos dos tradicionais

métodos experimentais baseados em tentativas e erro.

2.2 Modelagem baseada em restrições para a simulação de fenótipos

Para lidar com os avanços no desenvolvimento de GEMs cada vez mais complexos,

são requeridos métodos sofisticados de análise de dados. Dentre as abordagens desenvolvidas

mais adequadas para este tipo de problemática destaca-se a modelagem baseada em

restrições (Constraint-based modeling-CBM), que permite análises em larga escala sem

necessidade de informações cinéticas (BORDBAR et al., 2014; LEWIS; NAGARAJAN;

PALSSON, 2012).

Neste ramo, o primeiro e mais difundido método para previsão de fenótipos em

microorganismos é a Análise de Balanço de Fluxo (Flux Balance Analysis-FBA). Sua for-

mulação é baseada na hipótese de que o metabolismo de um microorganismo busca otimizar

um determinado objetivo celular que pode ser representado matematicamente através da

reação que representa a formação de biomassa (IBARRA; EDWARDS; PALSSON, 2002;

MAIA; ROCHA; ROCHA, 2016; FEIST; PALSSON, 2010).

Também é valido notar que o metabolismo ocorre em uma escala de tempo muito

mais rápida do que eventos regulatórios, assim como os de divisão celular. Desse modo

é razoável afirmar que as concentrações dos metabólitos não alteram-se com o passar

do tempo, assumindo-se assim um estado estacionário. Portanto, a equação 2.1 pode ser

reduzida a:

Smn · v(t) = 0 (2.2)

Ao combinar, portanto, a suposição de estado estacionário com a maximização

da biomassa é possível resolver a equação 2.2 para obter, como resultado, o vetor de

fluxos metabólicos v, conforme observável na figura 1 (ORTH; THIELE; PALSSON, 2010;

SAVINELL; PALSSON, 1992).

Uma das deficiências do FBA é que o vetor de soluções gerado não é único. Isso

significa que uma variedade de distribuições de fluxos pode levar à um mesmo valor ótimo

de biomassa. Portanto, para a seleção de fluxos cruciais e eliminação de falsos positivos,

é importante que seja realizada a Análise da Variabilidade dos Fluxos (Flux Variability

Analysis-FVA). Esta análise fornece os valores máximos e mínimos para cada reação dentro

de um mesmo valor ótimo de biomassa (MAHADEVAN; SCHILLING, 2003).
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Figura 1 – Visualização simplificada da modelagem baseada em restrições. Através da
otimização de uma função objetivo, o FBA pode identificar uma distribuição
ótima de fluxo que esteja dentro do limte do espaço de soluções permitido.

Fonte: (ORTH; THIELE; PALSSON, 2010)

2.3 Métodos de otimização de fenótipos para desenvolvimento de

fábricas microbianas

Como já mencionado, a identificação de genes alvo para manipulação das vias

metabólicas de um organismo, seja para melhorar a produção de um produto de interesse

ou para minimizar a produção de metabólitos indesejados, também pode ser guiada, de

forma racional, por GEMs. Neste caso, o esforço computacional é maior, uma vez que

o espaço de busca (combinações de reações a serem deletadas, ou super-expressas, por

exemplo) adquire grandes dimensões. Por exemplo, para uma rede metabólica hipotética

de 250 reações, uma otimização que contemple 5 knockouts implica em um espaço de

busca que ultrapassa 7, 8.109 possíveis soluções (PATIL et al., 2005). Dado o fato de que

os GEMs normalmente possuem uma dimensão superior à deste exemplo, problemas de

otimização de dois níveis podem ser empregados para buscar o melhor mutante a ser

obtido ao deletar (ou super/subexpressar) alguns genes do microrganismo selvagem de

interesse. Deste modo, este microorganismo é forçado a produzir o produto desejado por

meio de modificações genéticas ao mesmo tempo que permanece viável.

Neste sentido, diferentes algoritmos de otimização de cepas baseados em métodos

de Programação Inteira-Mista Linear de dois níveis (Mixed Integer Linear Programming -

MILP) ou métodos meta-heurísticos (MAIA; ROCHA; ROCHA, 2016) vêm sendo desenvol-

vidos e empregados para o desenho de estratégias de engenharia metabólica para biossíntese

de um amplo espectro de bioquímicos, como terpenos (SUN et al., 2014; HUANG et al.,

2018)), ácidos orgânicos (MIENDA; SALLEH, 2017; MISHRA et al., 2018), aminoácidos e

lipídeos.

Com base nisso, para o presente trabalho, foram selecionadas duas metodologias de

otimização de plataformas microbianas a fim de encontrar estratégias para a produção de
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ccAM em E. coli: o algoritmo evolutivo, e o Escaneamento de Fluxos baseado em Fluxo

Objetivo Imposto (Flux Scanning based on Enforced Objective Flux- FSEOF) representando

um método meta-heurística e um MILP, respectivamente (MAIA; ROCHA; ROCHA, 2016;

CHOI et al., 2010).

2.3.1 Escaneamento de Fluxos baseado em Fluxo Objetivo Imposto

O algoritmo FSEOF, consiste em um método para identificação in silico de supe-

rexpressões que favoreçam a produção de um determinado metabólito. O algoritmo varre

todos os fluxos do modelo e seleciona todos aqueles que aumentam conforme a produção

do metabólito é forçadamente aumentada (CHOI et al., 2010).

Para que o o FSEOF possa ser devidamente implementado, são calculados os fluxos

iniciais (vinicial
j ) através de um FBA com a maximização da biomassa como objetivo. Em

seguida, são calculados os fluxos no máximo teórico de produção do metabólito objetivo

(vmáximo
j ). Isso é feito através de outra iteração de FBA na qual o objetivo a ser maximizado

é a formação do produto desejado (ccAM, no caso deste projeto).

Uma vez que os fluxos iniciais e máximos são computados. FSEOF é conduzido a

partir da realização de FBA, com a maximizção da biomassa como objetivo, enquanto a

formação do produto de interesse é gradualmente aumentada a partir de seu valor inicial

até um valor adjacente ao máximo teórico anteriormente calculado, em um total de n

avaliações. A cada passo, os fluxos intracelulares calculados são analisados e aqueles que

apresentarem um aumento em relação ao passo anterior (sem que haja mudança na direção

da reação) são selecionados, conforme a figura 2.

Para o presente trabalho, foi implementada uma instância de FSEOF baseada

na incrementação gradual do fluxo de ccAM de 10 iterações, até o valor máximo dee

6, 93 mmol/gDW.h.

Figura 2 – Conceito envolvido no FSEOF.

Fonte: (CHOI et al., 2010)
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2.3.2 Algoritmo Evolutivo de Força Pareto 2

A classe dos algoritmos evolutivos lança mão do princípio de evolução Darwiniano

em uma metodologia meta-heurística de otimização. Esta abordagem consiste na ideia de

que dada uma população de indivíduos sob determinada pressão ambiental, a competição

por recursos causa uma seleção natural e os indivíduos mais aptos sobrevivem, causando

um aumento na aptidão geral da população.

Analogamente, dada uma função a ser maximizada, pode-se gerar aleatoriamente

um conjunto de possíveis soluções. Em sequência, aplica-se a função a este conjunto de

soluções como medida de ajuste, selecionando as soluções com maiores valores na função.

Estes valores, por sua vez, são sujeitos a operadores de variação para formular um novo

conjunto de soluções. Este é novamente sujeito à mesma função de avaliação, e este mesmo

processo se repete até que um certo valor seja atingido ou um certo número de iterações

deste processo seja realizado. Com base nessa analogia, pode-se denominar as possíveis

soluções como indivíduos, cada conjunto como uma geração e, por fim, os operadores de

variação podem ser denominados de mutação, quando aplicados à um único indivíduo, e

crossover, quando aplicados a dois ou mais indivíduos (EIBEN; SMITH, 2015).

Este método de abordagem vêm sendo amplamente utilizado, em conjunto com

CBMs, e indicado para a identificação de deleções que favoreçam o desenvolvimento de

plataformas microbianas (PATIL et al., 2005; VIEIRA et al., 2019). Neste nicho, cada

indivíduo é formado por um vetor binário indicando quais genes do modelo sofrerão deleção,

e os fenótipos de cada indivíduo são então avaliados de acordo com o objetivo de produção

do metabólito de interesse, conforme a figura 3:

Dado o formato base do algoritmo evolutivo, há uma pluralidade de opções dispo-

níveis para utilização, podendo permutar desde os operadores de variação até os métodos

de seleção de indivíduos. Um dos algoritmos evolutivos mais empregados na otimização de

cepas para engenharia metabólica, é o Algoritmo Evolutivo de Força Pareto 2 (SPEA2).

Esta versão, em específico, apresenta diversas vantagens, mas a principal diferença a ser

notada, é a possibilidade de otimização multiobjetivo (ZITZLER; LAUMANNS; THIELE,

2001).

O SPEA2 destaca-se como uma das alternativas meta-heurísticasa mais bem

consolidadas para otimização multiobjetivo. Este difere-se da categoria pela utilização do

conceito de eficiência de Pareto na seleção de fitness de indivíduos, permitindo portanto, a

utilização de diversos critérios como funções de ajuste.
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Figura 3 – Fluxograma do algoritmo evolutivo aplicado ao desenvolvimento de plataformas
microbianas.

Fonte: (PATIL et al., 2005)
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3 Metodologia

3.1 Adaptação do Modelo Metabólico e condições ambientais

Os estudos neste tabalho foram baseados no GEM iJO1366, por tratar-se de um

modelo já curado e amplamente utilizado em trabalhos de Engenharia Metabólica para

E. coli (ORTH et al., 2011). O modelo é composto por 1366 genes, 2583 reações, sendo

2253 reações de conversão e 330 reações de transporte, assim como 1805 metabólitos,

fornecendo portanto uma variedade de fluxos capaz de mimetizar o comportamento

da bactéria de maneira satisfatória. Como a E. coli não produz o metabólito ccAM

naturalmente, foi necessário adaptar o modelo IJO1366, inserindo uma via heteróloga

para viabilizar a formação do produto de interesse, assim como as reações de transporte

do muconato para o meio extracelular. A via selecionada inclui três reações partindo

do intermediário 3-desidrochiquimato (DHS), conforme a figura: 4. Dentre as 5 vias

metabólicas já descritas na literatura para a biossíntese de ccAM, selecionou-se a via cujo

precursor principal é o Dehidrochiquimato, em estudos prévios, por ser a rota com o maior

potencial para produção de ácido mucônico, com um fluxo máximo téorico avaliado em

8.4 mmol.gDW −1h−1 (AVERESCH; KRÖMER, 2014).

Figura 4 – Esquema simplificado das reações heterólogas inseridas no modelo.

Fonte: Autor.

Uma vez adaptado o modelo metabólico, algumas restrições foram alteradas de

forma a representar as condições sob as quais pretende-se submeter a cepa de E. coli

para a produção de ccAM. Inicialmente, o fluxo de entrada do substrato (glicose) foi

fixado em 10 mmol.gDW −1h−1. Em seguida, com base em análises prévias, conforme a

necessidade de oxigênio como reagente para a catecol 1,2-dioxigenase (CATDOX),optou-se

por uma via aeróbia de produção. No entanto, a ingestão de oxigênio também foi fixada

em 10 mmol.gDW −1h−1.
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3.2 Implementação dos métodos computacionais para otimização

de cepas

A adaptação do GEM iJO1366, assim como a implementação dos métodos discutidos

neste trabalho foram desenvolvidos em um computador desktop com Intel®CoreT M i7-

7500U @ 2.7 GHz. O projeto foi inteiramente desenvolvido a partir da linguagem Python

3.9.7.

Dentre os pacotes disponíveis, foram utilizados o COBRApy e MEWpy, respec-

tivamente para análises metabólicas baseadas em restrições e otimizações evolutivas

(EBRAHIM et al., 2013; PEREIRA; CRUZ; ROCHA, 2021). Todo o código desenvolvido

encontra-se disponível em: <https://github.com/dn8-bit/Muacc>.

3.2.1 Implementação do FSEOF

A utilização do pacote COBRApy permite uma fácil implementação do FSEOF

a partir de poucas linhas de código (EBRAHIM et al., 2013). Oferecendo métodos para

a leitura do GEM, na forma da função load_json_model, assim como a realização das

simulações FBA, na forma da função "optimize". Sendo, portanto, necessário apenas

formular o loop principal das iterações do algoritmo, conforme observável na figura 5.

Figura 5 – Loop principal para o FSEOF desenvolvido em python.

Fonte: Autor (Disponível em <https://github.com/dn8-bit/Muacc>).

Por fim, todas as reações selecionadas ao final das n avaliações foram também

sujeitas a uma análise FVA para eliminação de falsos positivos. Sendo assim, ao final

de todos os passos, as reações candidatas à superexpressão foram armazenadas em um

arquivo CSV.

https://github.com/dn8-bit/Muacc
https://github.com/dn8-bit/Muacc
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3.2.2 Algoritmo evolutivo

Para a implementação em python do SPEA2, optou-se pelo recém desenvolvido

Metabolic Engineering Workbench for python (MEWpy) (PEREIRA; CRUZ; ROCHA,

2021). A biblioteca, idealizada para resolver este exato tipo de problema, oferece opções

que exigem pouco volume de código para a implementação de um algoritmo evolutivo

para previsão de deleções. Através das classes EA, TargetFlux e RKOProblem, é possível

obter uma construção funcional da otimização em menos de 30 linhas de código, conforme

observável na figura 6.

Figura 6 – Código do SPEA2 desenvolvido em python.

Fonte: Autor (Disponível em <https://github.com/dn8-bit/Muacc>).

A implementação da otimização evolutiva, embora funcional, não foi capaz de

apresentar resultados no tempo hábil deste projeto devido ao alto custo computacional

das ferramentas disponíveis em Python.

https://github.com/dn8-bit/Muacc
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4 Resultados e discussão

4.1 Análise das superexpressões

A implementação desenvolvida para o FSEOF indicou apenas duas reações para

superexpressão: Transketolase (TKT1) e 3-desoxi-D-arabino-heptulosonato 7-fosfato sinte-

tase (DDPA), ambas relacionadas ao consumo e disponibilidade do precursor D-eritrose

4-fosfato (E4P). A relação entre tais superexpressões e a produção de ccAM pode ser

facilmente explicada pelo fato de que estas promovem um desvio de carbono do subtrato

do metabolismo usual em favor à via do chiquimato, conforme a figura 7 abaixo:

Figura 7 – Esquematização das reações selecionadas pelo FSEOF para superexpressão,
destacadas em vermelho.

Fonte: Autor.

Apesar de ambas serem apresentadas como candidatas pelo algoritmo, apenas a

DDPA apresenta um crescimento linear no fluxo de modo a acompanhar o aumento no
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fluxo de ccAM, conforme identificado na figura 8:

Figura 8 – Evolução dos fluxos internos dos resultados selecionados comparados ao fluxo
forçado de ccAM e da biomassa ao longo das iterações do FSEOF.

Fonte: Autor.

Uma análise do impacto individual de cada superexpressão indica que o maior

impacto na formação de ccAM é obtido pela superexpressão da DDPA, enquanto a

superexpressão apenas de TKT1 resulta em um acréscimo de somente 0,3% no produto de

interesse, conforme a figura 9.

Figura 9 – Impacto individual das superexpressões indicadas pelo FSEOF.

Fonte: Autor.

Após buscas na literatura, foi possível confirmar que há evidências prévias em

favor da hipótese de que estas modificações estão associadas à produção de ccAM, tendo
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sido aplicadas com sucesso em Saccharomyces cerevisiae (AVERESCH; KRÖMER, 2014;

CURRAN et al., 2013; CHOI et al., 2019b). Niu et al. (2002), também relata a formação

de ccAM em E. coli através da superexpressão da transketolase (NIU, 2002). Nos trabalhos

analisados, é afirmado que a superexpressão da transketolase promove um aumento

na disponibilidade do precursor E4P, que por sua vez é consumido na reação DDPA,

promovendo um aumento no fluxo de carbono na via do chiquimato.

Os resultados experimentais relatados na literatura, portanto, indicam a importância

da superexpressão da transketolase para a formação de ácido mucônico. As simulações

realizadas neste trabalho, no entanto apontam não apontam para as mesmas conclusões,

havendo pouca influência da Transketolase na produção de ccAM, conforme jáa explicitado

na figura 9. Uma hipótese para esta discordância reside no fato de que duas (TKT1 e

TKT2) são reguladas pelo mesmo gene e a reação TKT2 possui um fluxo contrário ao

sentido da produção de E4P no modelo utilizado, dessa maneira a medida que o fluxo

de ccAM é incrementado, a reação muda de direção, não sendo selecionada pelo FSEOF.

Sendo assim, uma simulação FBA precisa desta superxpressão exigiria ajustes complexos

no modelo.

Portanto, uma maneira de confirmar a importância da superexpressão da trans-

ketolase como estratégia para a plataforma microbiana através dos resultados obtidos é

observar a mudança de sinal e o crescente fluxo negativo em TKT2, conforme observável

na figura 10.

Figura 10 – Fluxo de TKT2 ao longo das iterações de FSEOF.

Fonte: Autor.

Sendo assim, reafirma-se a importância das superexpressões dos genes da TKT e

DDPA como estratégias de suma importância a serem empregadas nos testes in vivo.
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4.2 Análise de subexpressões

Outra seção dos resultados selecionados pelo FSEOF é composta por reações cujo

fluxo apresenta valores negativos que tornam-se mais próximos de zero conforme ocorre o

incremento do produto de interesse, sem que haja troca de direção da reação no máximo

teórico. Estes resultados podem ser interpretados como sugestões de subexpressões para

direcionamento do metabolismo em favor da formação de ácido mucônico.

A partir dos dados obtidos, é possível destacar um total de 17 reações cujos fluxos

diminuiram gradativamente conforme a formação de ccAM foi imposta. A partir dos

valores obtidos, foi realizada uma análise do impacto individual de cada subexpressão,

conforme observável na tabela 4.2:

Tabela 2 – Impacto Individual das subexpressões obtidas por FSEOF.

Reação
Fluxo de ccAM
(mmol/gDW.h)

Valor de biomassa

ACOTA 2,963 0,014
AGPR 2,963 0,014
ASAD 0,006 0,021
ASPTA 3,303 0,071

CTECOAI7 0,000 0,709
DHORTS 2,963 0,014
G3PD2 2,377 0,071
GLUDy 0,000 0,657
HSDy 0,002 0,007
ILETA 3,105 0,007
MOX 0,000 0,710
ORPT 2,377 0,071
PGK 0,000 0,440
PGM 0,000 0,525

PHETA1 2,377 0,071
SDPTA 2,377 0,071
TYRTA 2,377 0,071

Fonte: Autor.

A partir destes dados, nota-se que 4 modificações não resultaram em produção de

ácido mucônico: Isomerase 3-cis-2-trans-enoil-CoA (CTECOAI7), glutamato desidrogenase

(GLUDy), malato oxidase (MOX), fosfoglicerato quinase (PGK), fosfoglicerato mutase

(PGM). Além disso, as análises FBA adicionais atestaram que nenhuma combinação de

duas ou mais subexpressões resultou em ganhos na formação de produto em relação às

modificações individuais. Sendo assim, para as análises subsequentes foram consideradas

apenas as reações individuais que resultaram em ganhos na produção de ccAM.

Dentre as subexpressões que geraram formação de ccAM, destacam-se inicialmente,

as reações fenilalanina transaminase (PHETA1) e tirosina transaminase (TYRTA). A

relação destas pode ser facilmente explicadas por serem reações de formação de aminoácidos
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derivados da via do Corismato, competindo diretamente com a produção de ácido mucônico.

Sendo assim, tais modificações permitem que mais carbono seja desviado para a produção

de Protocatechuato e, por consequência, de ccAM. Conforme ilustrado na figura 11.

Além disso, outra subexpressão notável encontra-se na reação glicerol-3-fosfato

desidrogenase (G3PD2), esta foi relatada na literatura como candidata para deleção em S.

cerevisae, aumentando a disponibilidade de E4P para a via do chiquimato, conforme a figura

11 (AVERESCH; KRÖMER, 2014). Tal deleção, no entanto, teve de ser acompanhada da

superexpressão de reações produtoras de piruvato, uma vez que este Knock-out inviabiliza

o crescimento celular (HUBMANN; GUILLOUET; NEVOIGT, 2011; BOLES et al., 1997).

Figura 11 – Ilustração das reações PHETA1, TYRTA e G3PD2 em relação à via heteróloga
de ccAM e ao ciclo TCA, destacadas em vermelho.

Fonte: Autor.

Por fim, não foram encontrados na literatura, indícios que auxiliem na explicação

das subexpressões restantes. Uma hipótese que justifica o impacto dessas modificações é o

consumo de fosfoenol piruvato (PEP), através do Oxaloacetato (OAA). Este configura-se

como um nó que relaciona o PEP com as demais subexpressões sugeridas, que por sua

vez é um precursor essencial para a via heteróloga inserida (SAUER; EIKMANNS, 2005).

Embora não haja uma conexão direta entre o OAA e o ccAM, as simulações realizadas

neste estudo sugerem uma relação entre as reações que envolvem oxaloacetato e a produção

de ácido mucônico, exigindo análises subsequentes ao presente trabalho.
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Figura 12 – Ilustração das relação das reações ACOTA, AGPR, ASPTA, DHORTS, ILETA,
ORPT e SDPTA com os metabólitos OAA E PEP.

Fonte: Autor.

4.3 Análise da combinação de sub e superexpressões

Como análise final, as candidatas à subexpressão foram combinadas às superex-

pressões previamente discutidas para avaliar os efeitos da utilização de ambas estratégias

em conjunto.

Conforme indicado anteriormente, a utilização de duas ou mais subexpressões em

conjunto não implica em aumento na produção de ccAM e, em concordância com tais

análises, o mesmo comportamento pôde ser observado nestas simulações. Apenas uma

Subexpressão individual, ao ser combinada com as modificações de TKT e DDPA, foi capaz

de apresentar uma melhora na formação do produto de interesse: Aspartato Transamiinase

(ASPTA). O acréscimo desta subexpressão causou um aumento de 0, 7% no fluxo de ccAM,

elevando o valor final para 6, 93 mmol.gDW −1.h−1, conforme observável na figura 13.

O fato de que a ASPTA apresenta-se como única reação a promover um acréscimo

na produção de ccAM corrobora com a hipótese de que há uma relação entre o consumo

de oxaloacetato e a produção de ácido mucônico, isso se dá pelo fato de que essa reação

representa o desvio inicial do Fosfoenol Piruvato através do consumo de OAA. Sendo

assim, a diminuição do consumo de OAA e o aumento da disponibilidade do precursor

PEP são as principais causas prováveis do aumento no fluxo do produto de interesse.
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Figura 13 – Análise do impacto da combinação da superexpressão de DDPA, TKT e sub
expressão de ASPTA.

Fonte: Autor.

O valor obtido ao combinar estas 3 modificações genéticas corresponde ao máximo

forçado pelo FSEOF, atingindo assim o maior fluxo possível através dessa otimização. Isso

indica que a combinação destas modificações configura-se como uma estratégia ótima para

o desenvolvimento de uma plataforma microbiana de ccAM.
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5 Conclusão

Com base nas análises desenvolvidas no presente trabalho, foi possível identificar 3

modificações no metabolismo da E. coli com potencial para construção de uma plataforma

microbiana de produção de ácido mucônico: superexpressão das reações TKT1/TKT2 e

DDPA, assim como a subexpressão da reação ASPTA. Além disso, foi possível identificar que

a subexpressão das vias de produção dos aminoácidos tirosina e fenilalanina, que concorrem

diretamente com a via heteróloga inserida, podendo promover uma maior produtividade de

ccAM. Por fim, foi identificada uma relação entre o consumo de oxaloacetato e a produção

de ccAM, atráves da subexpressão de reações relacionadas ao OAA.

Para futuros trabalhos in silico, espera-se detalhar a relação entre OAA e ccAM

em E. coli. Além disso, deve-se refinar código em Python para otimização SPEA2, uma vez

que a metodologia ainda pode gerar resultados assim que seja atingida uma diminuição do

custo computacional, ou uma maior disponibilização de recursos para o projeto.

O próximo passo do projeto será avaliar a qualidade das estratégias desenvolvidas

para um melhor direcionamento das análises in vivo, permitindo assim um desenvolvimento

mais eficiente da plataforma microbiana desejada.
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