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Resumo

A crise ambiental é hoje, um dos mais graves problemas enfrentados pela humanidade.
Entre as causas desta problematica, destaca-se a alta dependéncia economica de matérias-
primas nao renovaveis para a producao industrial, gerando assim quantidades exorbitantes
de poluentes e rejeitos. Portanto enfatiza-se, na comunidade cientifica internacional, a
necessidade de uma economia circular baseada em biorrenovaveis e processos de menor

impacto ambiental.

Neste contexto de desenvolvimento de uma economia sustentavel encaixa-se este projeto,
que ataca esta problematica através do auxilio no desenvolvimento de um processo de
producéo baseado em plataformas microbianas para a producéo de Acido mucénico. Este é
um acido dicarboxilico de alto valor agregado e de extremo interesse industrial, por ser um
precursor direto de varias matérias-primas extensivamente utilizadas na industria quimica

para a fabricacao de nylon-6,6, PET e poliuretano.

No presente trabalho, buscou-se utilizar métodos de engenharia metabodlica in silico
para transformar a bactéria FEscherichia coli em uma biofabrica de muconato. Isso foi
realizado através da insercao de uma via heteréloga em um modelo metabdlico em escala
genomica da F. coli, possibilitando a producao in silico do composto de interesse. Para
promover uma biossintese efetiva, foram realizadas simulacoes por Andlise de Balanco
de Fluxo e otimizac¢bes computacionais a partir do Algoritmo Evolutivo de Forca Pareto
2 e Escaneamento de Fluxos baseado em Fluxo Objetivo Imposto, a fim de formular
estratégias ndo intuitivas de manipulagoes genéticas que aumentem a eficiéncia do processo
de formacao do acido muconico pela bactéria, utilizando glicose como fonte de carbono

renovavel, assim como condi¢oes ambientais que favorecam esta biossintese.

Palavras-chave: Modelos Metabdlicos em Escala Genomica, Acido muconico, Otimizacao,

Analise de Balancgo de Fluxo.






Abstract

The environmental crisis is today, one of the most serious problems facing humanity. Among
the causes of this problem, there is the high economic dependence on non-renewable raw
materials for industrial production, thus generating exorbitant amounts of pollutants and
waste. Therefore, the international scientific community emphasizes the need for a circular

economy based on biorenewables and processes with less environmental impact.

In this context of development of a sustainable economy, this project fits, which tackles
this problem by helping to develop a production process based on microbial platforms for
the production of muconic acid. This is a dicarboxylic acid of high added value and of
extreme industrial interest, as it is a direct precursor of several raw materials extensively

used in the chemical industry for the manufacture of nylon-6,6, PET and polyurethane.

In the present work, we sought to use in silico metabolic engineering methods to transform
the Escherichia coli bacteria into a muconate biofactory. This was done by inserting a
heterologous pathway into a genomic-scale metabolic model of E. coli, enabling the produc-
tion in silico of the compound of interest. To promote an effective biosynthesis, simulations
by Flux Balance Analysis and computational optimizations were carried out using the
Pareto Force 2 Evolutionary Algorithm and Flux Scanning based on Enforced Objective
Flux (FSEOF), in order to formulate non-intuitive strategies for genetic manipulations
that increase the efficiency of the process of formation of muconic acid by the bacteria,
using glucose as a renewable carbon source, as well as environmental conditions that favor

this biosynthesis.

Keywords: Genome-Scale Metabolic Models, Muconic Acid, Optimization, Flux Balance

Analysis.
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1 Introducao

1.1 Contextualizacao

Os avancos na industria quimica durante os ultimos séculos foram catalisadores
diretos de abruptas revolugoes no estilo e qualidade de vida da civilizagao contemporanea.
Inegavelmente, estas inovagoes abrangeram iniimeros setores, como o agricola, alimenticio,
farmacéutico, de satide, de materiais, téxtil, energético, entre outros (WONGTSCHOWSKI,
1957). Nesse sentido, o descobrimento e desenvolvimento de produtos quimicos, e a
formulacoes de técnicas para producao e sintese destes compostos moveram - e ainda

movem - este processo de transformacao rapida.

Embora tenha impactado positivamente varios aspectos da sociedade, a industria
quimica ainda contribui com o agravamento de adversidades enfrentadas no presente, dentre
as quais destaca-se a poluicao ambiental, visto que a fabricagao de produtos quimicos
de uso industrial ou final, frequentemente dependem de matérias-primas fosseis e metais
pesados, além de produzir gases de efeito estufa e outros poluentes na forma de residuos
(ALINI et al., 2007; CHADWICK] 1988)).

Sendo assim, com base no panorama de impacto ambiental da industria quimica,
e tendo em vista a gravidade dos problemas ambientais e mudancgas climaticas, assim
como os objetivos do desenvolvimento sustentavel (ONU, 2015} FIGUERES et al. 2017;
ROCKSTROM et al., 2009), enfatiza-se a necessidade do desenvolvimento de ciéncia
e tecnologias que promovam uma economia circular, baseada em recursos renovaveis

(LEITAO]| [2015; [BIRCH; TYFIELD], [2013).

Uma alternativa promissora que pode revolucionar ou pelo menos complementar
a producao quimica ¢ a industria biotecnoldgica. Nesta industria, recursos tipicamente
biogénicos sao convertidos por microrganismos ou por enzimas, gerando biocombustiveis,
aminoacidos, bioplasticos e bioquimicos de valor agregado, visando evitar o esgotamento
de recursos fésseis ndo renovéveis e as emissoes de gases de efeito estufa (GEE) associadas.
Além disso, acredita-se que o uso de recursos renovaveis tenha efeitos positivos para o
desenvolvimento socioeconémico, especialmente nas areas rurais, podendo colaborar com
o desenvolvimento sustentével (FROHLING; HIETE, |2020)).

1.2 Acido cis,cis-mucdnico e aplicacoes industriais

Os plasticos sao uma grande familia de polimeros, tradicionalmente derivados da

industria petroquimica que se caracterizam por apresentarem baixo custo, baixo peso,
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durabilidade e facilidade de fabricagao. Gragas ao amplo espectro de aplicagoes, a demanda
e a producao de plasticos tém aumentado continuamente a cada ano, colocando uma enorme
carga sobre os combustiveis fosseis e o consumo de petréleo. Atualmente, a producao de
plastico é responsavel por cerca de 4 a 8% do consumo de petréleo global, com expectativa
de chegar a 20% até 2050 (NARANCIC et al.l 2020).

Neste contexto, os bioplasticos tém atraido grande atencao do mercado mundial,
sendo um possivel substituinte de produtos plasticos convencionais baseados em fésseis.
Gracgas aos avancos crescentes e rapidos na area de engenharia metabdlica, é possivel
construir plataformas microbianas capazes de converter, de forma eficiente, matérias-
primas renovaveis, incluindo amido, celulose, acidos graxos, acicares e proteinas, em uma
variedade de monomeros e polimeros que podem ser empregados na sintese de diferentes

bioplasticos.

Em particular, é crescente o interesse mundial pelo dcido cis, cis-muconico (ccAM),
um acido dicarboxilico poli-insaturado de 6 carbonos que pode ser utilizado como inter-
mediario na producao de uma ampla gama de bioplasticos, como o polietileno tereftalico
(PET), poliamidas (nylon-6,6) e poliuretanos que sao usualmente obtidos a partir de recur-
sos fosseis., bem como de novas moléculas, como os acidos 3-hexenedioco e 2-hexenedioco,
que podem gerar polimeros com propriedade novas e avancadas e que nao poderiam ser
sintetizados efetivamente a partir de petroquimicos (SHANKS; KEELING, 2017).

Tradicionalmente, o ccAM é obtido através de processos quimicos dependentes de
matérias-primas nao renovaveis a base de petroleo, na presenca de altas concentragoes de
acidos e metais pesados, ou ainda a partir de processos cuja mistura de dois isomeros (dcido
cis, cis- muconico e cis, trans-muconico) é gerada a partir de catecol, um substrato aromatico
considerado de alto custo. Ambos os processos quimicos industrialmente disponiveis,
requerem grande aporte de energia e geram quantidades significativas de subprodutos
toxicos, fatos que intensificam os problemas de poluicao ambiental e aquecimento global,
além de custos elevados com substratos e/ou processos de separacao (XIE et al., 2014;
KHALIL et al., 2020).

Por outro lado, o ccAM também é produzido naturalmente como metabdlito in-
termediario da via (-cetoadipato, via responsavel pelo catabolismo e destoxificagao de
compostos aromaticos presente em microrganismos do solo, como leveduras do género
Candida e as bactérias dos géneros Pseudomonas, Acinetobacter e Rhodococcus. Desta
forma, sua a producao por rota biotecnoldgica, empregando plataformas microbianas
eficientes e substratos baratos e renovaveis se apresenta como uma estratégia ambiental-
mente e economicamente interessante (CURRAN et al.; 2013; KOHLSTEDT et al., [2018).
Adicionalmente, ccAM representa um produto importante a ser incorporado dentro do
conceito de biorrefinaria pois pode agregar valor a biomassa e viabilizar a implementagao

industrial do processo, uma vez que pode ser obtido a partir de qualquer monémero, seja
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de origem da celulose, hemicelulose e lignina de diferentes biomassas, ou ainda de outros

residuos de processos integrantes da biorrefinaria.

Devido ao seu grande potencial de aplicacao biotecnolégica, importantes companhias
de biotecnologia, como Amyris, Merck, GC Innovation America e Deinove, vém investindo
no desenvolvimento de plataformas microbianas e de bioprocessos eficientes para producao
de ccAM em escala industrial. Em 2018, o faturamento do mercado de ccAM foi de USD
79,6 milhGes, com tendéncia de crescimento significativo, podendo chegar a USD 119,4

milhoes em 2024 (IMARC, [2019).

Recentemente, varios estudos tém sido realizados a fim de redesenhar rotas meta-
bélicas de bactérias, como Pseudomonas sp., Sphingobium sp, Methylococcus capsulatus,
Corynebacterium glutamicum e Escherichia coli, e da levedura Saccharomyces cerevisiae a
fim de possibilitar a producao de ccAM a partir de substratos baratos e renovaveis como
carboidratos gerados nos processos de desconstrucdo de materiais lignocelulésicos (glicose,
xilose e compostos derivados da lignina), glicerol (residuo abundante da industria de biodi-
esel), gas metano entre outros residuos agroindustriais (XIE et al., 2014} SALVACHUA
et al., 2018, HENARD et al [2019)). Progressos significativos quanto a concentragao e

rendimento de ccAM estao sendo alcancados, como mostra a tabela [I}

Tabela 1 — Principais resultados de produgao de dcido muconico por rota biologica.

MIC‘I'O Substrato Concentracao Rendimento Referéncia
organismo (g/L) (mol/mol) B
P. putida p-coumarato + 5 o 1,00 (JOHNSON et al., 2016)
Glicose
P. putida Catecol + 25,0 1,00 (KOHLSTEDT et al., 2018)
Glicose
P. putida Glicose 22,0 0,36 (BENTLEY et al., 2020)
M. buryatense Metano 0,001 0,0001 (HENARD et al 2019)
C. glutamicum “8M3 T 18 ND (BECKER et al., 2018)
Glicose
C. glutamicum Glicose 37,5 0,21 (LEE et al., 2018))
S. cerevisae Glicose 0,1 0,01 (CURRAN et al., [2013)
S. cerevisae Glicose 5,1 0,07 (PYNE et al., 2018)
E. coli Glicose 2,4 0,30 (DRATHS; FROST, (1994])
E. coli Glicose 1,5 0,08 (LIN et al., 2014)
Glicerol
E. coli Glicose 36,8 0,22 (NIU, 2002)

Fonte: Autor.

Apesar dos avancos ja atingidos nessa area, as baixas produtividades de ccAM,
assim como a elevada produgao de subprodutos indesejados, em especial o protocatecuato,
produto intermediario da via do chiquimato, sao recorrentes nos trabalhos ja relatados.

Desta forma, o desenvolvimento de plataformas microbianas superprodutoras de ccAM
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mais robustas e com minima produc¢ao de subprodutos indesejados, além de bioprocessos
economicamente viaveis e ambientalmente corretos, permanecem como desafios e requerem

esforgos de engenharia metabdlica e de otimizacao de bioprocessos.

1.3 Objetivos

Com base neste contexto, o presente projeto visou a investigacao in silico de estra-
tégias para o desenvolvimento de uma plataforma microbiana para a producao de acido
muconico. Identificando, através de algoritmos desenvolvidos em Python, alvos de enge-
nharia genética para a delegao e super/subexpressao de genes visando o redirecionamento
dos fluxos metabdlicos da bactéria Escherichia coli que favorecam a producgao de acido

muconico a partir de glicose, uma fonte de carbono renovavel.
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2 Revisao Bibliografica

2.1 Modelos metabélicos em escala genomica como ferramentas

cruciais para o design de plataformas microbianas

A engenharia metabdlica de sistemas, area da ciéncia que incorpora conceitos e
ferramentas de biologia de sistemas, biologia sintética e engenharia evolutiva, tem acelerado
o desenvolvimento de cepas industriais de alta performance de forma direcionada e eficiente,
e vem contribuindo para o desenvolvimento de rotas sustentéveis alternativas para produgao
de um vasto espectro de produtos quimicos, desde combustiveis e commodities até produtos
quimicos finos (CHOI et al., 2019a; LEE; KIM| 2015).

Apbs a divulgagao da primeira sequéncia completa do genoma na década 90, as
pesquisas sobre modelos metabdlicos em escala genémica (GEMs) abriram uma nova era
em engenharia metabdlica. Hoje em dia, é crescente o uso de modelos metabdlicos em escala
genoémica (GEMs) para analisar e simular o metabolismo celular de diferentes organismos,
incluindo microorganismos, plantas e mamiferos. Além disso, tais GEMs sao considerados
uma ferramenta poderosa para desenho de estratégias de engenharia metabdlica (CHAE
et al., 2017).

Os GEMs sao reconstruidos a partir de informacoes biologicas curadas experi-
mentalmente com base em dados de anotacao de genes, de fungoes, metabdlitos, reagoes
metabolicas e suas interagoes para um determinado organismo, fornecendo representagoes
matematicas e computacionais das capacidades metabdlicas conhecidas deste organismo
(KIM et al. 2015} \GU et al.,2019). Estes modelos consistem em centenas ou milhares de
reacoes e sao baseados na estequiometria de todas as possiveis reagoes metabodlicas de uma

célula, considerando a reversibilidade destas reacoes.

Com base nestes dados de reacoes, é possivel modelar um sistema de equagoes
diferenciais do balango de massa para os componentes intracelulares, conforme explicitado

na expressao:

dey(t
C‘;t( I~ (2.1)
511 S12 " Sin
S21 S22ttt Sop
Smn = | 831 832 -+ S3p
_Sml Sm2 " Smn_

Onde ¢, representa a concentracao do n-ésimo metabdlito, S é a matriz de coefici-
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entes estequiométricos de m compostos ao longo de n reagoes e v(t) o vetor das velocidades

de reacao.

O uso de GEMs no design de plataformas microbianas contribui para a otimizagao
da producao do produto de interesse, reduzindo os esforcos e custos dos tradicionais

métodos experimentais baseados em tentativas e erro.

2.2 Modelagem baseada em restricoes para a simulacao de fendtipos

Para lidar com os avancos no desenvolvimento de GEMs cada vez mais complexos,
sao requeridos métodos sofisticados de analise de dados. Dentre as abordagens desenvolvidas
mais adequadas para este tipo de problematica destaca-se a modelagem baseada em
restrigoes (Constraint-based modeling-CBM), que permite analises em larga escala sem
necessidade de informagoes cinéticas (BORDBAR et al., 2014 LEWIS; NAGARAJAN;
PALSSON; [2012).

Neste ramo, o primeiro e mais difundido método para previsao de fendtipos em
microorganismos é a Andlise de Balango de Fluxo (Fluz Balance Analysis-FBA). Sua for-
mulagao é baseada na hipdtese de que o metabolismo de um microorganismo busca otimizar
um determinado objetivo celular que pode ser representado matematicamente através da
reagao que representa a formacao de biomassa (IBARRA; EDWARDS; PALSSON; [2002;
MAIA; ROCHA; ROCHA, 2016; FEIST; PALSSON;, [2010)).

Também ¢ valido notar que o metabolismo ocorre em uma escala de tempo muito
mais rapida do que eventos regulatérios, assim como os de divisao celular. Desse modo
¢é razoavel afirmar que as concentracoes dos metabdlitos nao alteram-se com o passar
do tempo, assumindo-se assim um estado estacionario. Portanto, a equacao [2.1| pode ser

reduzida a:

Sym - V(t) = 0 (2.2)

Ao combinar, portanto, a suposi¢ao de estado estacionario com a maximizacao
da biomassa é possivel resolver a equacao para obter, como resultado, o vetor de
fluxos metabdlicos v, conforme observavel na figura (1| (ORTH; THIELE; PALSSON|, 2010;
SAVINELL; PALSSON| 1992).

Uma das deficiéncias do FBA ¢é que o vetor de soluges gerado nao é tnico. Isso
significa que uma variedade de distribui¢des de fluxos pode levar & um mesmo valor 6timo
de biomassa. Portanto, para a sele¢ado de fluxos cruciais e eliminacao de falsos positivos,
é importante que seja realizada a Anélise da Variabilidade dos Fluxos (Fluz Variability

Analysis-FVA). Esta anélise fornece os valores maximos e minimos para cada reagao dentro
de um mesmo valor 6timo de biomassa (MAHADEVAN; SCHILLING, 2003).
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Figura 1 — Visualizacao simplificada da modelagem baseada em restri¢gdes. Através da
otimizagao de uma fung¢ao objetivo, o FBA pode identificar uma distribuicao
6tima de fluxo que esteja dentro do limte do espaco de solu¢des permitido.

Va Va Va
Constraints Optimization
1)Sv=0 maximize £
2)a;<v,<b;

Allowable
solution space

Vo Vo Vo

Unconstrained

solution space Optimal solution

Fonte: (ORTH; THIELE; PALSSON] [2010)

2.3 Meétodos de otimizacdo de fenétipos para desenvolvimento de

fabricas microbianas

Como ja mencionado, a identificacdo de genes alvo para manipulacdo das vias
metabodlicas de um organismo, seja para melhorar a producao de um produto de interesse
ou para minimizar a producao de metabélitos indesejados, também pode ser guiada, de
forma racional, por GEMs. Neste caso, o esfor¢o computacional é maior, uma vez que
o espago de busca (combinagdes de reagdes a serem deletadas, ou super-expressas, por
exemplo) adquire grandes dimensées. Por exemplo, para uma rede metabdlica hipotética
de 250 reacoes, uma otimizacao que contemple 5 knockouts implica em um espaco de
busca que ultrapassa 7,8.10° possiveis solucoes (PATIL et al., 2005). Dado o fato de que
os GEMs normalmente possuem uma dimensao superior a deste exemplo, problemas de
otimizacao de dois niveis podem ser empregados para buscar o melhor mutante a ser
obtido ao deletar (ou super/subexpressar) alguns genes do microrganismo selvagem de
interesse. Deste modo, este microorganismo é forcado a produzir o produto desejado por

meio de modificacbes genéticas ao mesmo tempo que permanece viavel.

Neste sentido, diferentes algoritmos de otimizacao de cepas baseados em métodos
de Programagao Inteira-Mista Linear de dois niveis (Mized Integer Linear Programming -
MILP) ou métodos meta-heuristicos (MAIA; ROCHA; ROCHA| 2016]) vém sendo desenvol-
vidos e empregados para o desenho de estratégias de engenharia metabdlica para biossintese
de um amplo espectro de bioquimicos, como terpenos (SUN et al., [2014; HUANG et al.,
2018))), acidos organicos (MIENDA; SALLEH, [2017; MISHRA et al/ 2018)), aminoacidos e
lipideos.

Com base nisso, para o presente trabalho, foram selecionadas duas metodologias de

otimizacao de plataformas microbianas a fim de encontrar estratégias para a producgao de
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ccAM em FE. coli: o algoritmo evolutivo, e o Escaneamento de Fluxos baseado em Fluxo
Objetivo Imposto (Fluz Scanning based on Enforced Objective Fluz- FSEOF) representando
um método meta-heuristica e um MILP, respectivamente (MAIA; ROCHA; ROCHA| [2016;
CHOI et al., 2010).

2.3.1 Escaneamento de Fluxos baseado em Fluxo Objetivo Imposto

O algoritmo FSEOF, consiste em um método para identificacao in silico de supe-
rexpressoes que favorecam a producao de um determinado metabodlito. O algoritmo varre
todos os fluxos do modelo e seleciona todos aqueles que aumentam conforme a producgao
do metabdlito é forgadamente aumentada (CHOI et al., [2010).

Para que o o FSEOF possa ser devidamente implementado, sdo calculados os fluxos

iniciais (vé”icz'“l ) através de um FBA com a maximizagao da biomassa como objetivo. Em
seguida, sao calculados os fluxos no maximo tedrico de produgao do metabélito objetivo

(U;’némimo

¢ a formagcao do produto desejado (ccAM, no caso deste projeto).

). Isso é feito através de outra iteragdo de FBA na qual o objetivo a ser maximizado

Uma vez que os fluxos iniciais e maximos sao computados. FSEOF é conduzido a
partir da realizacao de FBA, com a maximiz¢do da biomassa como objetivo, enquanto a
formacao do produto de interesse é gradualmente aumentada a partir de seu valor inicial
até um valor adjacente ao maximo tedrico anteriormente calculado, em um total de n
avaliagoes. A cada passo, os fluxos intracelulares calculados sdo analisados e aqueles que
apresentarem um aumento em relagdo ao passo anterior (sem que haja mudanga na diregao

da reagdo) sao selecionados, conforme a figura .

Para o presente trabalho, foi implementada uma instancia de FSEOF baseada
na incrementagao gradual do fluxo de ccAM de 10 iteragoes, até o valor maximo dee
6,93 mmol /gDW.h.

Figura 2 — Conceito envolvido no FSEOF.

Increased flux (v) Decreased flux (v;) Unchanged flux (v;)

ZocKe Enforce the
objective flux of
enforce: \ product formation
Voroduer fp————=—== =

Product formation rate
Vproduct (mmol/gDCW/h)
<
]

Biomass formation rate Viiomass (h)

Fonte: (CHOI et al., 2010)
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2.3.2 Algoritmo Evolutivo de Forca Pareto 2

A classe dos algoritmos evolutivos lanca mao do principio de evolugao Darwiniano
em uma metodologia meta-heuristica de otimizacao. Esta abordagem consiste na ideia de
que dada uma populacao de individuos sob determinada pressao ambiental, a competicao
por recursos causa uma selecao natural e os individuos mais aptos sobrevivem, causando

um aumento na aptidao geral da populacao.

Analogamente, dada uma func¢do a ser maximizada, pode-se gerar aleatoriamente
um conjunto de possiveis solugoes. Em sequéncia, aplica-se a funcao a este conjunto de
solucoes como medida de ajuste, selecionando as solugoes com maiores valores na funcao.
Estes valores, por sua vez, sao sujeitos a operadores de variagao para formular um novo
conjunto de solugoes. Este é novamente sujeito a mesma fungao de avaliacao, e este mesmo
processo se repete até que um certo valor seja atingido ou um certo niimero de iteragoes
deste processo seja realizado. Com base nessa analogia, pode-se denominar as possiveis
solugoes como individuos, cada conjunto como uma geracao e, por fim, os operadores de
variacao podem ser denominados de mutacao, quando aplicados a um tnico individuo, e

crossover, quando aplicados a dois ou mais individuos (EIBEN; SMITH, 2015)).

Este método de abordagem vém sendo amplamente utilizado, em conjunto com
CBMs, e indicado para a identificacao de dele¢oes que favorecam o desenvolvimento de
plataformas microbianas (PATIL et al., |2005; VIEIRA et all 2019). Neste nicho, cada
individuo é formado por um vetor binario indicando quais genes do modelo sofrerao delecao,
e os fendtipos de cada individuo sdo entao avaliados de acordo com o objetivo de producao

do metabdlito de interesse, conforme a figura [3

Dado o formato base do algoritmo evolutivo, ha uma pluralidade de op¢des dispo-
niveis para utilizagao, podendo permutar desde os operadores de variacao até os métodos
de selecao de individuos. Um dos algoritmos evolutivos mais empregados na otimizacao de
cepas para engenharia metabdlica, é o Algoritmo Evolutivo de Forca Pareto 2 (SPEA2).
Esta versao, em especifico, apresenta diversas vantagens, mas a principal diferenca a ser
notada, é a possibilidade de otimizacao multiobjetivo (ZITZLER; LAUMANNS; THIELE,
2001).

O SPEA2 destaca-se como uma das alternativas meta-heuristicasa mais bem
consolidadas para otimizacao multiobjetivo. Este difere-se da categoria pela utilizacao do
conceito de eficiéncia de Pareto na selecao de fitness de individuos, permitindo portanto, a

utilizagao de diversos critérios como fungoes de ajuste.
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Figura 3 — Fluxograma do algoritmo evolutivo aplicado ao desenvolvimento de plataformas

microbianas.
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3 Metodologia

3.1 Adaptacao do Modelo Metabdlico e condicoes ambientais

Os estudos neste tabalho foram baseados no GEM iJO1366, por tratar-se de um
modelo ja curado e amplamente utilizado em trabalhos de Engenharia Metabdlica para
E. coli (ORTH et al 2011)). O modelo é composto por 1366 genes, 2583 reagoes, sendo
2253 reagoes de conversao e 330 reagoes de transporte, assim como 1805 metabdlitos,
fornecendo portanto uma variedade de fluxos capaz de mimetizar o comportamento
da bactéria de maneira satisfatéria. Como a F. coli ndo produz o metabédlito ccAM
naturalmente, foi necessario adaptar o modelo 1JO1366, inserindo uma via heteréloga
para viabilizar a formagao do produto de interesse, assim como as reagoes de transporte
do muconato para o meio extracelular. A via selecionada inclui trés reagoes partindo
do intermedidrio 3-desidrochiquimato (DHS), conforme a figura: [l Dentre as 5 vias
metabodlicas ja descritas na literatura para a biossintese de ccAM, selecionou-se a via cujo
precursor principal é o Dehidrochiquimato, em estudos prévios, por ser a rota com o maior
potencial para producgao de acido muconico, com um fluxo maximo téorico avaliado em

8.4mmol.gDW=th~! (AVERESCH; KROMER), 2014)).

Figura 4 — Esquema simplificado das reacoes heterélogas inseridas no modelo.
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Fonte: Autor.

Uma vez adaptado o modelo metabdlico, algumas restrigoes foram alteradas de
forma a representar as condigoes sob as quais pretende-se submeter a cepa de FE. coli
para a produgdo de ccAM. Inicialmente, o fluxo de entrada do substrato (glicose) foi
fixado em 10 mmol.gDW ~'h~!. Em seguida, com base em andlises prévias, conforme a
necessidade de oxigénio como reagente para a catecol 1,2-dioxigenase (CATDOX),optou-se

por uma via aerébia de producao. No entanto, a ingestao de oxigénio também foi fixada
em 10 mmol.gDW ~th=1.
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3.2 Implementacao dos métodos computacionais para otimizacao

de cepas

A adaptacao do GEM iJO1366, assim como a implementacao dos métodos discutidos
neste trabalho foram desenvolvidos em um computador desktop com Intel®Core’™ i7-
7500U @ 2.7 GHz. O projeto foi inteiramente desenvolvido a partir da linguagem Python

3.9.7.

Dentre os pacotes disponiveis, foram utilizados o COBRApy e MEWpy, respec-
tivamente para andlises metabodlicas baseadas em restricoes e otimizagoes evolutivas
(EBRAHIM et al., 2013; PEREIRA; CRUZ; ROCHA, [2021)). Todo o c6digo desenvolvido
encontra-se disponivel em: <https://github.com/dn8-bit/Muacc>.

3.2.1 Implementacao do FSEOF

A utilizagao do pacote COBRApy permite uma facil implementagao do FSEOF
a partir de poucas linhas de cédigo (EBRAHIM et al.| 2013)). Oferecendo métodos para
a leitura do GEM, na forma da funcao load_json__model, assim como a realizagdo das
simulacdoes FBA, na forma da funcao "optimize'. Sendo, portanto, necessiario apenas

formular o loop principal das iteragoes do algoritmo, conforme observavel na figura [5]

Figura 5 — Loop principal para o FSEOF desenvolvido em python.

for item in fluxos_ forcados:
i+=1

reacao_alvo.upper_bound=item
reacao_alvo. lower_bound=i
simulacao= cobra_mode
simulacao.to _csv(f'fli
lista fluxos.append(s
a=[]
for reacao in cobra_model.reactions:
if lista_fluxos[i-1][reacao.id]<lista fluxos[i][reacac.id] and lista_fluxos[i][reacao.id]*lista_fluxos[i-1][reacao.id]>=0:

fva.to_csv(
lista_fva.append(fv
lista_selecionadas.append(a)

with open('resul
for a in 1i ci

out_file.writelines(

lista_fluxos.append(fluxos_maximo)

Fonte: Autor (Disponivel em <https://github.com/dn8-bit/Muacc>)).

Por fim, todas as reagoes selecionadas ao final das n avaliagoes foram também
sujeitas a uma andlise FVA para eliminacao de falsos positivos. Sendo assim, ao final
de todos os passos, as reacoes candidatas a superexpressao foram armazenadas em um

arquivo CSV.
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3.2.2 Algoritmo evolutivo

Para a implementacao em python do SPEA2, optou-se pelo recém desenvolvido
Metabolic Engineering Workbench for python (MEWpy) (PEREIRA; CRUZ; ROCHA,
2021)). A biblioteca, idealizada para resolver este exato tipo de problema, oferece opgoes
que exigem pouco volume de cédigo para a implementacao de um algoritmo evolutivo
para previsao de delegoes. Através das classes EA, TargetFlux e RKOProblem, é possivel
obter uma construgio funcional da otimiza¢ao em menos de 30 linhas de cédigo, conforme

observavel na figura [0}

Figura 6 — Codigo do SPEA2 desenvolvido em python.

from mewpy.problems import RKOProblem,

from mewpy.optimization.evaluation import TargetFlux
from mewpy.optimization import EA

from cobra.io import load_json_model

from mewpy.util.constants import EAConstants

import csv

EAConstants.NUM_CPUS = 8

model= load_json_model('RotaA.json")
biomassa="R_Ec_biomass_iJ01366_core_53p95M"
produto="R_DHSKDH"
02="R_EX_02_LPAREN_e_RPAREN_"
glc="R_EX_glc_LPAREN_e_RPAREN_"

envcond={glc: (-10.000,-9.99999),02:(-10.0800,-9.99999)}
model.objective="R_Ec_biomass_iJ01366_core_53p95M"

simulation=get_simulator(model,envcond=envcond)
res=simulation.simulate(method="FBA")

evaluator= TargetFlux(produto,biomass=biomassa, min_biomass_value=0.82)
problem=RKOProblem(model,fevaluation=[evaluator],envcond=envcond,candidate_max_size=5)
ea=EA(problem,max_generations=1€000 ,visualizer=False,mp=True,algorithm="SPEA2'")
final_pop=ea.run()

with open('filename', 'wb') as myfile:
wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)
wr.writerow(final_pop)

Fonte: Autor (Disponivel em <https://github.com/dn8-bit/Muacc>).

A implementacao da otimizacao evolutiva, embora funcional, nao foi capaz de
apresentar resultados no tempo habil deste projeto devido ao alto custo computacional

das ferramentas disponiveis em Python.


https://github.com/dn8-bit/Muacc
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4 Resultados e discussao

4.1 Analise das superexpressoes

A implementacao desenvolvida para o FSEOF indicou apenas duas rea¢oes para
superexpressao: Transketolase (TKT1) e 3-desoxi-D-arabino-heptulosonato 7-fosfato sinte-
tase (DDPA), ambas relacionadas ao consumo e disponibilidade do precursor D-eritrose
4-fosfato (E4P). A relacdo entre tais superexpressoes e a producao de ccAM pode ser
facilmente explicada pelo fato de que estas promovem um desvio de carbono do subtrato

do metabolismo usual em favor a via do chiquimato, conforme a figura [7] abaixo:

Figura 7 — Esquematizagao das reagoes selecionadas pelo FSEOF para superexpressao,
destacadas em vermelho.
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Fonte: Autor.

Apesar de ambas serem apresentadas como candidatas pelo algoritmo, apenas a

DDPA apresenta um crescimento linear no fluxo de modo a acompanhar o aumento no
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fluxo de ccAM, conforme identificado na figura 8}

Figura 8 — Evolucao dos fluxos internos dos resultados selecionados comparados ao fluxo
forcado de ccAM e da biomassa ao longo das iteragoes do FSEOF.
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Fonte: Autor.

Uma anélise do impacto individual de cada superexpressao indica que o maior
impacto na formacao de ccAM é obtido pela superexpressao da DDPA, enquanto a
superexpressao apenas de TKT1 resulta em um acréscimo de somente 0,3% no produto de

interesse, conforme a figura [9

Figura 9 — Impacto individual das superexpressoes indicadas pelo FSEOF.
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Fonte: Autor.

Apods buscas na literatura, foi possivel confirmar que ha evidéncias prévias em

favor da hipdtese de que estas modificagoes estao associadas a producao de ccAM, tendo
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sido aplicadas com sucesso em Saccharomyces cerevisiae (AVERESCH; KROMER), [2014;
CURRAN et al., 2013; (CHOLI et al., [2019b). Niu et al. (2002), também relata a formagao
de ccAM em E. coli através da superexpressao da transketolase (NIU|[2002). Nos trabalhos
analisados, é afirmado que a superexpressao da transketolase promove um aumento
na disponibilidade do precursor E4P, que por sua vez é consumido na reacao DDPA,

promovendo um aumento no fluxo de carbono na via do chiquimato.

Os resultados experimentais relatados na literatura, portanto, indicam a importancia
da superexpressao da transketolase para a formacao de acido muconico. As simulagoes
realizadas neste trabalho, no entanto apontam nao apontam para as mesmas conclusoes,
havendo pouca influéncia da Transketolase na producao de ccAM, conforme jaa explicitado
na figura |§| Uma hip6tese para esta discordancia reside no fato de que duas (TKT1 e
TKT2) sao reguladas pelo mesmo gene e a reagdo TKT2 possui um fluxo contrario ao
sentido da produc¢ao de E4P no modelo utilizado, dessa maneira a medida que o fluxo
de ccAM é incrementado, a reacdo muda de dire¢ao, nao sendo selecionada pelo FSEOF.
Sendo assim, uma simulagdo FBA precisa desta superxpressao exigiria ajustes complexos

no modelo.

Portanto, uma maneira de confirmar a importancia da superexpressao da trans-
ketolase como estratégia para a plataforma microbiana através dos resultados obtidos é

observar a mudanga de sinal e o crescente fluxo negativo em TKT2, conforme observavel

na figura [10}

Figura 10 — Fluxo de TKT2 ao longo das iteragoes de FSEOF.
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Fonte: Autor.

Sendo assim, reafirma-se a importancia das superexpressoes dos genes da TKT e

DDPA como estratégias de suma importancia a serem empregadas nos testes in vivo.
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4.2 Analise de subexpressoes

Outra secao dos resultados selecionados pelo FSEOF é composta por reacoes cujo
fluxo apresenta valores negativos que tornam-se mais préximos de zero conforme ocorre o
incremento do produto de interesse, sem que haja troca de direcao da reacao no maximo
tedrico. Estes resultados podem ser interpretados como sugestoes de subexpressoes para

direcionamento do metabolismo em favor da formagao de acido muconico.

A partir dos dados obtidos, é possivel destacar um total de 17 reacoes cujos fluxos
diminuiram gradativamente conforme a formagao de ccAM foi imposta. A partir dos
valores obtidos, foi realizada uma analise do impacto individual de cada subexpressao,

conforme observével na tabela (4.2

Tabela 2 — Impacto Individual das subexpressoes obtidas por FSEOF.
Fluxo de ccAM

Reacao (mmol /gDW.h) Valor de biomassa
ACOTA 2,963 0,014
AGPR 2,963 0,014
ASAD 0,006 0,021
ASPTA 3,303 0,071
CTECOAI7 0,000 0,709
DHORTS 2,963 0,014
G3PD2 2,377 0,071
GLUDy 0,000 0,657
HSDy 0,002 0,007
ILETA 3,105 0,007
MOX 0,000 0,710
ORPT 2,377 0,071
PGK 0,000 0,440
PGM 0,000 0,525
PHETA1 2,377 0,071
SDPTA 2,377 0,071
TYRTA 2,377 0,071

Fonte: Autor.

A partir destes dados, nota-se que 4 modifica¢oes nao resultaram em producao de
dcido muconico: Isomerase 3-cis-2-trans-enoil-CoA (CTECOAIT), glutamato desidrogenase
(GLUDy), malato oxidase (MOX), fosfoglicerato quinase (PGK), fosfoglicerato mutase
(PGM). Além disso, as andlises FBA adicionais atestaram que nenhuma combinagao de
duas ou mais subexpressoes resultou em ganhos na formacao de produto em relacao as
modificagoes individuais. Sendo assim, para as analises subsequentes foram consideradas

apenas as reacoes individuais que resultaram em ganhos na producao de ccAM.

Dentre as subexpressoes que geraram formacao de ccAM, destacam-se inicialmente,
as reagoes fenilalanina transaminase (PHETA1) e tirosina transaminase (TYRTA). A

relacao destas pode ser facilmente explicadas por serem reacoes de formagcao de aminoacidos
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derivados da via do Corismato, competindo diretamente com a producao de acido muconico.
Sendo assim, tais modificacoes permitem que mais carbono seja desviado para a produgao

de Protocatechuato e, por consequéncia, de ccAM. Conforme ilustrado na figura [T1]

Além disso, outra subexpressao notavel encontra-se na reagao glicerol-3-fosfato
desidrogenase (G3PD2), esta foi relatada na literatura como candidata para delecao em S.
cerevisae, aumentando a disponibilidade de E4P para a via do chiquimato, conforme a figura
(AVERESCH; KROMER)], [2014). Tal delegdo, no entanto, teve de ser acompanhada da
superexpressao de reagoes produtoras de piruvato, uma vez que este Knock-out inviabiliza

o crescimento celular (HUBMANN; GUILLOUET; NEVOIGT, 2011; BOLES et al. [1997).

Figura 11 — Ilustracao das reagoes PHETA1, TYRTA e G3PD2 em relacao a via heterdloga
de ccAM e ao ciclo TCA, destacadas em vermelho.
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Por fim, ndo foram encontrados na literatura, indicios que auxiliem na explicagao
das subexpressoes restantes. Uma hipdtese que justifica o impacto dessas modificagoes é o
consumo de fosfoenol piruvato (PEP), através do Oxaloacetato (OAA). Este configura-se
como um no que relaciona o PEP com as demais subexpressoes sugeridas, que por sua
vez é um precursor essencial para a via heter6loga inserida (SAUER; EIKMANNS, [2005)).

Embora nao haja uma conexao direta entre o OAA e o ccAM, as simulagoes realizadas

neste estudo sugerem uma relacao entre as reagoes que envolvem oxaloacetato e a produgao

de acido muconico, exigindo analises subsequentes ao presente trabalho.



38 Capitulo 4. Resultados e discussao

Figura 12 — Ilustragao das relacao das reagoes ACOTA, AGPR, ASPTA, DHORTS, ILETA,
ORPT e SDPTA com os metabdlitos OAA E PEP.
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4.3 Analise da combinacado de sub e superexpressoes

Como analise final, as candidatas a subexpressao foram combinadas as superex-
pressoes previamente discutidas para avaliar os efeitos da utilizacao de ambas estratégias

em conjunto.

Conforme indicado anteriormente, a utilizacdo de duas ou mais subexpressoes em
conjunto nao implica em aumento na producao de ccAM e, em concordancia com tais
analises, o mesmo comportamento pode ser observado nestas simulagoes. Apenas uma
Subexpressao individual, ao ser combinada com as modificagoes de TKT e DDPA, foi capaz
de apresentar uma melhora na formagao do produto de interesse: Aspartato Transamiinase
(ASPTA). O acréscimo desta subexpressao causou um aumento de 0, 7% no fluxo de ccAM,

elevando o valor final para 6,93 mmol.gDW ~*.h~!, conforme observével na figura .

O fato de que a ASPTA apresenta-se como tinica reagdo a promover um acréscimo
na producgao de ccAM corrobora com a hipdtese de que ha uma relagdo entre o consumo
de oxaloacetato e a produgao de acido muconico, isso se da pelo fato de que essa reacao
representa o desvio inicial do Fosfoenol Piruvato através do consumo de OAA. Sendo
assim, a diminuicdo do consumo de OAA e o aumento da disponibilidade do precursor

PEP sao as principais causas provaveis do aumento no fluxo do produto de interesse.
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Figura 13 — Andlise do impacto da combina¢ao da superexpressao de DDPA, TKT e sub
expressao de ASPTA.
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Fonte: Autor.

O valor obtido ao combinar estas 3 modificagoes genéticas corresponde a0 maximo
forcado pelo FSEOF, atingindo assim o maior fluxo possivel através dessa otimizacao. Isso
indica que a combinacao destas modificagoes configura-se como uma estratégia 6tima para

o desenvolvimento de uma plataforma microbiana de ccAM.
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5 Conclusao

Com base nas analises desenvolvidas no presente trabalho, foi possivel identificar 3
modificagoes no metabolismo da F. coli com potencial para construcao de uma plataforma
microbiana de produgao de dcido muconico: superexpressao das reagoes TKT1/TKT2 e
DDPA, assim como a subexpressao da reacao ASPTA. Além disso, foi possivel identificar que
a subexpressao das vias de producao dos aminoacidos tirosina e fenilalanina, que concorrem
diretamente com a via heteréloga inserida, podendo promover uma maior produtividade de
ccAM. Por fim, foi identificada uma relacao entre o consumo de oxaloacetato e a producao

de ccAM, atraves da subexpressao de reacgoes relacionadas ao OAA.

Para futuros trabalhos in silico, espera-se detalhar a relagao entre OAA e ccAM
em E. coli. Além disso, deve-se refinar cédigo em Python para otimizacao SPEA2, uma vez
que a metodologia ainda pode gerar resultados assim que seja atingida uma diminui¢do do

custo computacional, ou uma maior disponibilizacao de recursos para o projeto.

O préximo passo do projeto serd avaliar a qualidade das estratégias desenvolvidas
para um melhor direcionamento das analises in vivo, permitindo assim um desenvolvimento

mais eficiente da plataforma microbiana desejada.
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